Convolutional Neural Network for Coastal Wetland Classification in Hyperspectral Image

Chang Liu, Mengmeng Zhang, Wei Li, Weiwei Sun, Ran Tao

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Classifying different land cover types with hyperspectral image (HSI) is significant for restoring and protecting natural resources and maintaining ecological services in coastal wetlands. This paper proposes a multi-domain features fusion convolutional neural network (MDF-CNN) based classification method for hyperspectral images of coastal wetlands. This method adopts inter-class sparsity based discriminative least square regression (ICSDLSR) to learn a more compact and discriminative transformation, as well as fuse the high-level features of the original domain and the regression domain to obtain higher classification accuracy. Experimental results demonstrate the effectiveness of the proposed method when compared with some recent classifiers. The MDF-CNN achieved state-of-the-art performance on two latest GF-5 HSI datasets of Coastal Wetland.

源语言英语
主期刊名2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
5104-5107
页数4
ISBN(电子版)9781728163741
DOI
出版状态已出版 - 26 9月 2020
活动2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, 美国
期限: 26 9月 20202 10月 2020

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
国家/地区美国
Virtual, Waikoloa
时期26/09/202/10/20

指纹

探究 'Convolutional Neural Network for Coastal Wetland Classification in Hyperspectral Image' 的科研主题。它们共同构成独一无二的指纹。

引用此