Convolutional Neural Network Architecture for Semaphore Recognition

Wanchong Li, Yuliang Yang, Mengyuan Wang, Linhao Zhang, Mengyu Zhu

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

This paper proposes convolutional neural networks SRNet and Tiny-SRNet for human semaphore action recognition. SRNet is composed of 5 layers of convolution and 3 layers of fully connected layers. In addition to the first convolution layer., a batch normalization layer is added before each convolution layer. In order to enable deep learning algorithms to be applied to both mobile and embedded platforms., Tiny-SRNet removes the full connected layers in SRNet and replaces them with a convolutional layer and a global average pooling layer. The experimental results show that compared with the mainstream classification models AlexNet., GoogleNet and VGGI6., SRNet achieves the highest recognition rate of 98.9% on the semaphore dataset., and Tiny-SRNet compresses its model size to 1/24 of SRNet with a reduction of 1.7% accuracy.

源语言英语
主期刊名ICSESS 2018 - Proceedings of 2018 IEEE 9th International Conference on Software Engineering and Service Science
编辑Li Wenzheng, M. Surendra Prasad Babu
出版商IEEE Computer Society
559-562
页数4
ISBN(电子版)9781538665640
DOI
出版状态已出版 - 2 7月 2018
活动9th IEEE International Conference on Software Engineering and Service Science, ICSESS 2018 - Beijing, 中国
期限: 23 11月 201825 11月 2018

出版系列

姓名Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS
2018-November
ISSN(印刷版)2327-0586
ISSN(电子版)2327-0594

会议

会议9th IEEE International Conference on Software Engineering and Service Science, ICSESS 2018
国家/地区中国
Beijing
时期23/11/1825/11/18

指纹

探究 'Convolutional Neural Network Architecture for Semaphore Recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此