Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction-diffusion problems

Guoqing Zhu*, Shaochun Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

The bilinear finite element methods on appropriately graded meshes are considered both for solving singular and semisingular perturbation problems. In each case, the quasi-optimal order error estimates are proved in the ε{lunate}-weighted H1-norm uniformly in singular perturbation parameter ε{lunate}, up to a logarithmic factor. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε{lunate}-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.

源语言英语
页(从-至)373-393
页数21
期刊Journal of Computational and Applied Mathematics
220
1-2
DOI
出版状态已出版 - 15 10月 2008
已对外发布

指纹

探究 'Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction-diffusion problems' 的科研主题。它们共同构成独一无二的指纹。

引用此