摘要
The numerical approximation by a lower-order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving semisingular perturbation problems. The quasi-optimal-order error estimates are proved in the ε-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
源语言 | 英语 |
---|---|
页(从-至) | 1387-1407 |
页数 | 21 |
期刊 | Mathematical Methods in the Applied Sciences |
卷 | 31 |
期 | 12 |
DOI | |
出版状态 | 已出版 - 8月 2008 |
已对外发布 | 是 |
指纹
探究 'Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhu, G., & Chen, S. (2008). Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems. Mathematical Methods in the Applied Sciences, 31(12), 1387-1407. https://doi.org/10.1002/mma.978