Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems

Guoqing Zhu*, Shaochun Chen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

The numerical approximation by a lower-order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving semisingular perturbation problems. The quasi-optimal-order error estimates are proved in the ε-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.

源语言英语
页(从-至)1387-1407
页数21
期刊Mathematical Methods in the Applied Sciences
31
12
DOI
出版状态已出版 - 8月 2008
已对外发布

指纹

探究 'Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for semisingularly perturbed reaction-diffusion problems' 的科研主题。它们共同构成独一无二的指纹。

引用此