TY - JOUR
T1 - Control strategies for inverted pendulum
T2 - A comparative analysis of linear, nonlinear, and artificial intelligence approaches
AU - Irfan, Saqib
AU - Zhao, Liangyu
AU - Ullah, Safeer
AU - Mehmood, Adeel
AU - Butt, Muhammad Fasih Uddin
N1 - Publisher Copyright:
Copyright: © 2024 Irfan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/3
Y1 - 2024/3
N2 - An inverted pendulum is a challenging underactuated system characterized by nonlinear behavior. Defining an effective control strategy for such a system is challenging. This paper presents an overview of the IP control system augmented by a comparative analysis of multiple control strategies. Linear techniques such as linear quadratic regulators (LQR) and progressing to nonlinear methods such as Sliding Mode Control (SMC) and back-stepping (BS), as well as artificial intelligence (AI) methods such as Fuzzy Logic Controllers (FLC) and SMC based Neural Networks (SMCNN). These strategies are studied and analyzed based on multiple parameters. Nonlinear techniques and AI-based approaches play key roles in mitigating IP nonlinearity and stabilizing its unbalanced form. The aforementioned algorithms are simulated and compared by conducting a comprehensive literature study. The results demonstrate that the SMCNN controller outperforms the LQR, SMC, FLC, and BS in terms of settling time, overshoot, and steady-state error. Furthermore, SMCNN exhibit superior performance for IP systems, albeit with a complexity trade-off compared to other techniques. This comparative analysis sheds light on the complexity involved in controlling the IP while also providing insights into the optimal performance achieved by the SMCNN controller and the potential of neural network for inverted pendulum stabilization.
AB - An inverted pendulum is a challenging underactuated system characterized by nonlinear behavior. Defining an effective control strategy for such a system is challenging. This paper presents an overview of the IP control system augmented by a comparative analysis of multiple control strategies. Linear techniques such as linear quadratic regulators (LQR) and progressing to nonlinear methods such as Sliding Mode Control (SMC) and back-stepping (BS), as well as artificial intelligence (AI) methods such as Fuzzy Logic Controllers (FLC) and SMC based Neural Networks (SMCNN). These strategies are studied and analyzed based on multiple parameters. Nonlinear techniques and AI-based approaches play key roles in mitigating IP nonlinearity and stabilizing its unbalanced form. The aforementioned algorithms are simulated and compared by conducting a comprehensive literature study. The results demonstrate that the SMCNN controller outperforms the LQR, SMC, FLC, and BS in terms of settling time, overshoot, and steady-state error. Furthermore, SMCNN exhibit superior performance for IP systems, albeit with a complexity trade-off compared to other techniques. This comparative analysis sheds light on the complexity involved in controlling the IP while also providing insights into the optimal performance achieved by the SMCNN controller and the potential of neural network for inverted pendulum stabilization.
UR - http://www.scopus.com/inward/record.url?scp=85187149454&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0298093
DO - 10.1371/journal.pone.0298093
M3 - Article
C2 - 38452009
AN - SCOPUS:85187149454
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 3 March
M1 - e0298093
ER -