Context-Aware Safe Medication Recommendations with Molecular Graph and DDI Graph Embedding

Qianyu Chen, Xin Li*, Kunnan Geng, Mingzhong Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Molecular structures and Drug-Drug Interactions (DDI) are recognized as important knowledge to guide medication recommendation (MR) tasks, and medical concept embedding has been applied to boost their performance. Though promising performance has been achieved by leveraging Graph Neural Network (GNN) models to encode the molecular structures of medications or/and DDI, we observe that existing models are still defective: 1) to differentiate medications with similar molecules but different functionality; or/and 2) to properly capture the unintended reactions between drugs in the embedding space. To alleviate this limitation, we propose Carmen, a cautiously designed graph embedding-based MR framework. Carmen consists of four components, including patient representation learning, context information extraction, context-aware GNN, and DDI encoding. Carmen incorporates the visit history into the representation learning of molecular graphs to distinguish molecules with similar topology but dissimilar activity. Its DDI encoding module is specially devised for the non-transitive interaction DDI graphs. The experiments on real-world datasets demonstrate that Carmen achieves remarkable performance improvement over state-of-the-art models and can improve the safety of recommended drugs with proper DDI graph encoding.

源语言英语
主期刊名AAAI-23 Technical Tracks 6
编辑Brian Williams, Yiling Chen, Jennifer Neville
出版商AAAI press
7053-7060
页数8
ISBN(电子版)9781577358800
DOI
出版状态已出版 - 27 6月 2023
活动37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, 美国
期限: 7 2月 202314 2月 2023

出版系列

姓名Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
37

会议

会议37th AAAI Conference on Artificial Intelligence, AAAI 2023
国家/地区美国
Washington
时期7/02/2314/02/23

指纹

探究 'Context-Aware Safe Medication Recommendations with Molecular Graph and DDI Graph Embedding' 的科研主题。它们共同构成独一无二的指纹。

引用此