Construction of a CaHPO4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application in glycyrrhetinic acid 3-O-mono-β-d-glucuronide preparation

Tian Jiang, Yuhui Hou, Tengjiang Zhang, Xudong Feng*, Chun Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using site-directed mutagenesis, we previously obtained a variant of β-glucuronidase from Aspergillus oryzae Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHPO4-PGUS1 hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid self-assembly. Under optimal conditions, 1.2 mg of a CaHPO4-PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg·g−1 loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHPO4-PGUS1 hybrid nanoflower. Moreover, the thermostability of the CaHPO4-PGUS1 hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHPO4-PGUS1 hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity. [Figure not available: see fulltext.].

源语言英语
页(从-至)554-562
页数9
期刊Frontiers of Chemical Science and Engineering
13
3
DOI
出版状态已出版 - 1 9月 2019

指纹

探究 'Construction of a CaHPO4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application in glycyrrhetinic acid 3-O-mono-β-d-glucuronide preparation' 的科研主题。它们共同构成独一无二的指纹。

引用此