Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh-Current Oxygen Evolution

Shuai Chang, Yu Zhang, Bangmin Zhang, Xun Cao, Lei Zhang, Xiaolei Huang*, Wanheng Lu, Chun Yee Aaron Ong, Shuang Yuan, Chaojiang Li, Yizhong Huang, Kaiyang Zeng, Liqun Li, Wentao Yan*, Jun Ding*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

52 引用 (Scopus)

摘要

Scaling up commercial hydrogen production by water electrolysis requires efficient oxygen evolution reaction (OER) electrodes that can deliver large current densities (more than 500 mA cm−2) at low overpotentials. Here, a highly active and conductive shell-based cellular (Shellular) electrode is developed through a strategy of embedding nanocrystalline Ni3Nb intermetallics into an amorphous NiFe-OOH matrix. The tailor-made laser remelting process enables the dispersive precipitation of corrosion-resistant nanocrystalline Ni3Nb in large numbers. After in situ electrochemical activation in the self-developed growth-mode-control electrolyte, the amorphous NiFe-OOH nanosheets and nanocrystalline Ni3Nb are formed on the as-printed Inconel 718. The conductive atomic force microscopy (C-AFM) studies and density functional theory (DFT) calculations elucidate that nanocrystalline Ni3Nb can simultaneously enhance the conductivity and activity of the catalyst film. Additionally, a Shellular structure inspired by nature is designed, interestingly, its specific surface area keeps constant with increases in porosity. This design can result in a large surface area and high porosity but with less material cost. Using this electrochemically activated Shellular electrode for OER, a high current density of 1500 mA cm−2 is achieved at a record-low overpotential of 261 mV with good durability. This development may open the door for large-scale industrial water electrolysis.

源语言英语
文章编号2100968
期刊Advanced Energy Materials
11
28
DOI
出版状态已出版 - 28 7月 2021

指纹

探究 'Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh-Current Oxygen Evolution' 的科研主题。它们共同构成独一无二的指纹。

引用此