摘要
In this book, we introduce two critical application scenarios for SDN: SD-WANs and SD-DCNs. To improve network performance of SD-WANs and SD-DCNs, we leverage emerging ML techniques (i.e., DRL, MARL, and GNN) to maintain the load balance, increase the power efficiency, and improve the QoS. This book exhibits the effectiveness of ML for solving networking problems and paves the way for the future research on the usage of DRL, MARL, and GNN for computer networks.
源语言 | 英语 |
---|---|
主期刊名 | SpringerBriefs in Computer Science |
出版商 | Springer |
页 | 67-68 |
页数 | 2 |
DOI | |
出版状态 | 已出版 - 2022 |
出版系列
姓名 | SpringerBriefs in Computer Science |
---|---|
ISSN(印刷版) | 2191-5768 |
ISSN(电子版) | 2191-5776 |
指纹
探究 'Conclusion and Future Work' 的科研主题。它们共同构成独一无二的指纹。引用此
Guo, Z. (2022). Conclusion and Future Work. 在 SpringerBriefs in Computer Science (页码 67-68). (SpringerBriefs in Computer Science). Springer. https://doi.org/10.1007/978-981-19-4874-9_6