TY - JOUR
T1 - Computational Fluid Dynamics Simulation and Optimization of Hydropneumatic Spring Damper Valves for Heavy Vehicle Applications
AU - Nie, Wei
AU - He, Hongwen
AU - Sha, Luming
AU - Wang, Chao
AU - Du, Fu
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - To satisfy the design requirements for a hydropneumatic spring damper valve, the inlet–outlet pressure drop (ΔP) and the axial force on the spool (FZ) of a valve were investigated using fluid–solid coupling simulations and multi-objective optimization, along with the effects of the diameters of three internal holes (DA, DB, and DC) in the valve on the ΔP and the FZ. First, a meshed computational fluid dynamics model of a damper valve was established based on its geometric structure. Next, the effects of the flow rate (Q) and the diameter of the damping hole in the internal structure on the ΔP and the FZ of the damper valve were investigated. The results showed that the ΔP and the FZ varied nonlinearly with Q. For a given Q, the ΔP decreased as DA, DB, and DC increased. For a given Q, the FZ was not related to DA and DC, but it decreased as DB increased. Finally, the structure of the damper valve was optimized by defining the ΔP and the FZ as the response variables and DA, DB, and DC as the explanatory variables. The results showed that the best configuration of the hole diameters was DA = 8.8 mm, DB = 5.55 mm, and DC = 6 mm. In this configuration, ΔP = 0.704 MPa and FZ = 110.005 N. The ΔP of the optimized valve was closer to the middle value of the target range than that of the initial valve design. The difference between the simulated and target values of the FZ decreased from 0.28% to 0.0045%, satisfying application requirements.
AB - To satisfy the design requirements for a hydropneumatic spring damper valve, the inlet–outlet pressure drop (ΔP) and the axial force on the spool (FZ) of a valve were investigated using fluid–solid coupling simulations and multi-objective optimization, along with the effects of the diameters of three internal holes (DA, DB, and DC) in the valve on the ΔP and the FZ. First, a meshed computational fluid dynamics model of a damper valve was established based on its geometric structure. Next, the effects of the flow rate (Q) and the diameter of the damping hole in the internal structure on the ΔP and the FZ of the damper valve were investigated. The results showed that the ΔP and the FZ varied nonlinearly with Q. For a given Q, the ΔP decreased as DA, DB, and DC increased. For a given Q, the FZ was not related to DA and DC, but it decreased as DB increased. Finally, the structure of the damper valve was optimized by defining the ΔP and the FZ as the response variables and DA, DB, and DC as the explanatory variables. The results showed that the best configuration of the hole diameters was DA = 8.8 mm, DB = 5.55 mm, and DC = 6 mm. In this configuration, ΔP = 0.704 MPa and FZ = 110.005 N. The ΔP of the optimized valve was closer to the middle value of the target range than that of the initial valve design. The difference between the simulated and target values of the FZ decreased from 0.28% to 0.0045%, satisfying application requirements.
KW - axial force on a spool
KW - fluid–solid coupling analysis
KW - hydropneumatic spring damper valve
KW - inlet–outlet pressure drop
KW - multi-objective optimization
UR - http://www.scopus.com/inward/record.url?scp=85166201927&partnerID=8YFLogxK
U2 - 10.3390/machines11070680
DO - 10.3390/machines11070680
M3 - Article
AN - SCOPUS:85166201927
SN - 2075-1702
VL - 11
JO - Machines
JF - Machines
IS - 7
M1 - 680
ER -