Compressive sensing for reconstruction, classification, and detection of hyperspectral images

Bing Zhang, Wei Li, Lianru Gao, Xu Sun

科研成果: 书/报告/会议事项章节章节同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 7
  • Captures
    • Readers: 32
see details

摘要

Hyperspectral imagery (HSI) acquired by remote-sensing systems (e.g., a spaceborne or an airborne sensor) typically records reflectance values over a wide region of the electromagnetic spectrum [1,2]. Each pixel in an HSI represents many contiguous and narrow spectral bands (e.g., a spectral range of 0.4 to 2.4 µm). This enables HSI to potentially provide rich information about the materials in the image scene. HSI has become a widely available modality used in a wide variety of applications, including urban-growth analysis, biological and chemical detection, environmental monitoring, mineral exploration, etc.

源语言英语
主期刊名Compressive Sensing of Earth Observations
出版商CRC Press
273-297
页数25
ISBN(电子版)9781498774383
ISBN(印刷版)9781498774376
DOI
出版状态已出版 - 1 1月 2017
已对外发布

指纹

探究 'Compressive sensing for reconstruction, classification, and detection of hyperspectral images' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, B., Li, W., Gao, L., & Sun, X. (2017). Compressive sensing for reconstruction, classification, and detection of hyperspectral images. 在 Compressive Sensing of Earth Observations (页码 273-297). CRC Press. https://doi.org/10.1201/9781315154626