Combining the Transformers and CNNs for Renal Parenchymal Tumors Diagnosis

Shuai Wang, Lian Yu Zhang, Hui Qian Du*, Yan Chen*, Yao Zheng, Wenbo Mei

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Convolutional neural networks (CNNs) can be used to automatically classify the subtypes of renal parenchymal tumors. However, such approaches may overlook the long-range dependencies of features. In this study, we stacked Transformers and CNNs to efficiently capture both long-range dependencies of features and low-level spatial details. The optimal stack layout, the width, and the depth of the networks were determined according to the characteristics of the renal tumors. In addition, we adopted transfer learning for better performance. The experiments conducted on the T2-weighted magnetic resonance (T2W-MR) images from 199 patients presented an 82.9% overall classification accuracy and 0.96 average AUC. The results demonstrate that combining CNN with Transforms is an effective strategy for renal parenchymal tumors diagnosis.

源语言英语
主期刊名2022 10th International Conference on Bioinformatics and Computational Biology, ICBCB 2022
出版商Institute of Electrical and Electronics Engineers Inc.
56-60
页数5
ISBN(电子版)9781665401081
DOI
出版状态已出版 - 2022
活动10th International Conference on Bioinformatics and Computational Biology, ICBCB 2022 - Virtual, Hangzhou, 中国
期限: 13 5月 202215 5月 2022

出版系列

姓名2022 10th International Conference on Bioinformatics and Computational Biology, ICBCB 2022

会议

会议10th International Conference on Bioinformatics and Computational Biology, ICBCB 2022
国家/地区中国
Virtual, Hangzhou
时期13/05/2215/05/22

指纹

探究 'Combining the Transformers and CNNs for Renal Parenchymal Tumors Diagnosis' 的科研主题。它们共同构成独一无二的指纹。

引用此