Cold start cumulative citation recommendation for knowledge base acceleration

Jingang Wang, Jingtian Jiang, Lejian Liao*, Dandan Song, Zhiwei Zhang, Chin Yew Lin

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper studies cold start Cumulative Citation Recommen dation (CCR) for Knowledge Base Acceleration (KBA), whose objective is to detect potential citations for target entities without existing KB entries from a volume of stream documents. Unlike routine CCR, in which target entities are identified by a reference KB, cold start CCR is more common since lots of less popular entities do not have any KB entry in practice. We propose a two-step strategy to address this problem: (1) event-based sentence clustering and (2) document ranking. In addition, to build effective rankers, we develop three kinds of features based on the clustering results: time range, local profile and action pattern. Empirical studies on TREC-KBA-2014 dataset demonstrate the effectiveness of the proposed strategy and the novel features.

源语言英语
主期刊名Advances in Information Retrieval - 38th European Conference on IR Research, ECIR 2016, Proceedings
编辑Marie-Francine Moens, Nicola Ferro, Gianmaria Silvello, Giorgio Maria di Nunzio, Claudia Hauff, Fabio Crestani, Josiane Mothe, Fabrizio Silvestri
出版商Springer Verlag
748-753
页数6
ISBN(印刷版)9783319306704
DOI
出版状态已出版 - 2016
活动38th European Conference on Information Retrieval Research, ECIR 2016 - Padua, 意大利
期限: 20 3月 201623 3月 2016

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9626
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议38th European Conference on Information Retrieval Research, ECIR 2016
国家/地区意大利
Padua
时期20/03/1623/03/16

指纹

探究 'Cold start cumulative citation recommendation for knowledge base acceleration' 的科研主题。它们共同构成独一无二的指纹。

引用此