Coexistence solutions of a periodic competition model with nonlinear diffusion

Yifu Wang, Jingxue Yin, Yuanyuan Ke*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 2
see details

摘要

This paper is concerned with a spatially heterogeneous Lotka-Volterra competition model with nonlinear diffusion and nonlocal terms, under the Dirichlet boundary condition. Based on the theory of Leray-Schauder's degree, we give sufficient conditions to assure the existence of coexistence periodic solutions, which extends some results of G. Fragnelli et al.

源语言英语
页(从-至)1082-1091
页数10
期刊Nonlinear Analysis: Real World Applications
14
2
DOI
出版状态已出版 - 4月 2013

指纹

探究 'Coexistence solutions of a periodic competition model with nonlinear diffusion' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wang, Y., Yin, J., & Ke, Y. (2013). Coexistence solutions of a periodic competition model with nonlinear diffusion. Nonlinear Analysis: Real World Applications, 14(2), 1082-1091. https://doi.org/10.1016/j.nonrwa.2012.08.019