摘要
This paper is concerned with a spatially heterogeneous Lotka-Volterra competition model with nonlinear diffusion and nonlocal terms, under the Dirichlet boundary condition. Based on the theory of Leray-Schauder's degree, we give sufficient conditions to assure the existence of coexistence periodic solutions, which extends some results of G. Fragnelli et al.
源语言 | 英语 |
---|---|
页(从-至) | 1082-1091 |
页数 | 10 |
期刊 | Nonlinear Analysis: Real World Applications |
卷 | 14 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 4月 2013 |
指纹
探究 'Coexistence solutions of a periodic competition model with nonlinear diffusion' 的科研主题。它们共同构成独一无二的指纹。引用此
Wang, Y., Yin, J., & Ke, Y. (2013). Coexistence solutions of a periodic competition model with nonlinear diffusion. Nonlinear Analysis: Real World Applications, 14(2), 1082-1091. https://doi.org/10.1016/j.nonrwa.2012.08.019