Co-attention hierarchical network: Generating coherent long distractors for reading comprehension

Xiaorui Zhou, Senlin Luo, Yunfang Wu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

22 引用 (Scopus)

摘要

In reading comprehension, generating sentence-level distractors is a significant task, which requires a deep understanding of the article and question. The traditional entity-centered methods can only generate word-level or phrase-level distractors. Although recently proposed neural-based methods like sequence-to-sequence (Seq2Seq) model show great potential in generating creative text, the previous neural methods for distractor generation ignore two important aspects. First, they didn’t model the interactions between the article and question, making the generated distractors tend to be too general or not relevant to question context. Second, they didn’t emphasize the relationship between the distractor and article, making the generated distractors not semantically relevant to the article and thus fail to form a set of meaningful options. To solve the first problem, we propose a co-attention enhanced hierarchical architecture to better capture the interactions between the article and question, thus guide the decoder to generate more coherent distractors. To alleviate the second problem, we add an additional semantic similarity loss to push the generated distractors more relevant to the article. Experimental results show that our model outperforms several strong baselines on automatic metrics, achieving state-of-the-art performance. Further human evaluation indicates that our generated distractors are more coherent and more educative compared with those distractors generated by baselines.

源语言英语
主期刊名AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
出版商AAAI press
9725-9732
页数8
ISBN(电子版)9781577358350
出版状态已出版 - 2020
活动34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, 美国
期限: 7 2月 202012 2月 2020

出版系列

姓名AAAI 2020 - 34th AAAI Conference on Artificial Intelligence

会议

会议34th AAAI Conference on Artificial Intelligence, AAAI 2020
国家/地区美国
New York
时期7/02/2012/02/20

指纹

探究 'Co-attention hierarchical network: Generating coherent long distractors for reading comprehension' 的科研主题。它们共同构成独一无二的指纹。

引用此