Clothing Status Awareness for Long-Term Person Re-Identification

Yan Huang, Qiang Wu, Jing Song Xu, Yi Zhong, Zhao Xiang Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

76 引用 (Scopus)

摘要

Long-Term person re-identification (LT-reID) exposes extreme challenges because of the longer time gaps between two recording footages where a person is likely to change clothing. There are two types of approaches for LT-reID: biometrics-based approach and data adaptation based approach. The former one is to seek clothing irrelevant biometric features. However, seeking high quality biometric feature is the main concern. The latter one adopts fine-tuning strategy by using data with significant clothing change. However, the performance is compromised when it is applied to cases without clothing change. This work argues that these approaches in fact are not aware of clothing status (i.e., change or no-change) of a pedestrian. Instead, they blindly assume all footages of a pedestrian have different clothes. To tackle this issue, a Regularization via Clothing Status Awareness Network (RCSANet) is proposed to regularize descriptions of a pedestrian by embedding the clothing status awareness. Consequently, the description can be enhanced to maintain the best ID discriminative feature while improving its robustness to real-world LT-reID where both clothing-change case and no-clothing-change case exist. Experiments show that RCSANet performs reasonably well on three LT-reID datasets.

源语言英语
主期刊名Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
出版商Institute of Electrical and Electronics Engineers Inc.
11875-11884
页数10
ISBN(电子版)9781665428125
DOI
出版状态已出版 - 2021
活动18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
期限: 11 10月 202117 10月 2021

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
国家/地区加拿大
Virtual, Online
时期11/10/2117/10/21

指纹

探究 'Clothing Status Awareness for Long-Term Person Re-Identification' 的科研主题。它们共同构成独一无二的指纹。

引用此