Classical Hamiltonian time crystals-general theory and simple examples

Jin Dai, Antti J. Niemi*, Xubiao Peng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

We focus on a Hamiltonian system with a continuous symmetry, and dynamics that takes place on a presymplectic manifold. We explain how the symmetry can become spontaneously broken by a time crystal, that we define as the minimum of the available mechanical free energy that is simultaneously a time dependent solution of Hamilton's equation. The mathematical description of such a timecrystalline spontaneous symmetry breaking builds on concepts of equivariant Morse theory in the space of Hamiltonian flows. As an example we analyze a general family of timecrystalline Hamiltonians that is designed to model polygonal, piecewise linear closed strings. The vertices correspond to the locations of pointlike interaction centers; the string is akin a chain of atoms, that are joined together by covalent bonds, modeled by the links of the string. We argue that the timecrystalline character of the string can be affected by its topology. For this we show that a knotty string is usually more timecrystalline than a string with no self-entanglement. We also reveal a relation between phase space topology and the occurrence of timecrystalline dynamics. For this we show that in the case of three point particles, the presence of a time crystal can relate to a Dirac monopole that resides in the phase space. Our results propose that physical examples of Hamiltonian time crystals can be realized in terms of closed, knotted molecular rings.

源语言英语
文章编号085006
期刊New Journal of Physics
22
8
DOI
出版状态已出版 - 8月 2020

指纹

探究 'Classical Hamiltonian time crystals-general theory and simple examples' 的科研主题。它们共同构成独一无二的指纹。

引用此