TY - JOUR
T1 - Charge delocalization in a cyclometalated bisruthenium complex bridged by a noninnocent 1,2,4,5-Tetra(2-pyridyl)benzene ligand
AU - Yao, Chang Jiang
AU - Zhong, Yu Wu
AU - Yao, Jiannian
PY - 2011/10/5
Y1 - 2011/10/5
N2 - Two ruthenium atoms are covalently connected to the para positions of a phenyl ring in 1,2,4,5-tetra(2-pyridyl)benzene (tpb) to form a linear Ru-tpb-Ru arrangement. This unique structure leads to appealing electronic properties for the biscyclometalated complex [(tpy)Ru(tpb)Ru(tpy)]2+, where tpy is 2,2′;6′,2′-terpyridine. It could be stepwise oxidized at substantially low potential (+0.12 and +0.55 V vs Ag/AgCl) and with a noticeably large comproportionation constant (1.94 × 107). In addition to the routinely observed metal-to-ligand charge-transfer transitions, [(tpy)Ru(tpb)Ru(tpy)]2+ displays a separate and distinct absorption band at 805 nm with appreciable absorptivity (ε = 9000 M-1 cm-1). This band is assigned to the charge transition from the Ru-tpb-Ru motif to the pyridine rings of tpb with the aide of density functional theory (DFT) and time-dependent DFT calculations. Complex [(tpy)Ru(tpb)Ru(tpy)] 2+ was precisely titrated with 1 equiv of cerium ammonium nitrate to produce [(tpy)Ru(tpb)Ru(tpy)]3+, which shows intense multiple NIR transitions. The electronic coupling parameters Hab of individual NIR components are determined to be 5812, 4942, 4358, and 3560 cm-1. DFT and TDDFT calculation were performed on [(tpy)Ru(tpb)Ru(tpy)]3+ to elucidate its electronic structure and spin density population and the nature of the observed NIR transitions. Electron paramagnetic resonance studies of [(tpy)Ru(tpb)Ru(tpy)]3+ exhibit a discernible rhombic signal with the isotropic g factor of «g» = 2.144. These results point to the strong orbital interaction of tpb with metal centers and that tpb behaves as a redox noninnocent bridging ligand in [(tpy)Ru(tpb)Ru(tpy)]2+. Complex [(tpy)Ru(tpb)Ru(tpy)]3+ is determined to be a Robin-Day class III system with full charge delocalization across the Ru-tpb-Ru motif.
AB - Two ruthenium atoms are covalently connected to the para positions of a phenyl ring in 1,2,4,5-tetra(2-pyridyl)benzene (tpb) to form a linear Ru-tpb-Ru arrangement. This unique structure leads to appealing electronic properties for the biscyclometalated complex [(tpy)Ru(tpb)Ru(tpy)]2+, where tpy is 2,2′;6′,2′-terpyridine. It could be stepwise oxidized at substantially low potential (+0.12 and +0.55 V vs Ag/AgCl) and with a noticeably large comproportionation constant (1.94 × 107). In addition to the routinely observed metal-to-ligand charge-transfer transitions, [(tpy)Ru(tpb)Ru(tpy)]2+ displays a separate and distinct absorption band at 805 nm with appreciable absorptivity (ε = 9000 M-1 cm-1). This band is assigned to the charge transition from the Ru-tpb-Ru motif to the pyridine rings of tpb with the aide of density functional theory (DFT) and time-dependent DFT calculations. Complex [(tpy)Ru(tpb)Ru(tpy)] 2+ was precisely titrated with 1 equiv of cerium ammonium nitrate to produce [(tpy)Ru(tpb)Ru(tpy)]3+, which shows intense multiple NIR transitions. The electronic coupling parameters Hab of individual NIR components are determined to be 5812, 4942, 4358, and 3560 cm-1. DFT and TDDFT calculation were performed on [(tpy)Ru(tpb)Ru(tpy)]3+ to elucidate its electronic structure and spin density population and the nature of the observed NIR transitions. Electron paramagnetic resonance studies of [(tpy)Ru(tpb)Ru(tpy)]3+ exhibit a discernible rhombic signal with the isotropic g factor of «g» = 2.144. These results point to the strong orbital interaction of tpb with metal centers and that tpb behaves as a redox noninnocent bridging ligand in [(tpy)Ru(tpb)Ru(tpy)]2+. Complex [(tpy)Ru(tpb)Ru(tpy)]3+ is determined to be a Robin-Day class III system with full charge delocalization across the Ru-tpb-Ru motif.
UR - http://www.scopus.com/inward/record.url?scp=80053326427&partnerID=8YFLogxK
U2 - 10.1021/ja205879y
DO - 10.1021/ja205879y
M3 - Article
AN - SCOPUS:80053326427
SN - 0002-7863
VL - 133
SP - 15697
EP - 15706
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 39
ER -