Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery

Mei Lu, Xiaoyun Zhao, Haonan Xing, Hui Liu, Lang Lang, Tianzhi Yang, Zhe Xun, Dongkai Wang*, Pingtian Ding

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

51 引用 (Scopus)

摘要

Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform, due to their specific composition and biological properties. However, challenges like considerable complexity, low isolation yield, drug payload, and potential safety concerns substantially reduce their pharmaceutical acceptability. Given that the nano-bio-interface is a crucial factor for nanocarrier behavior and function, modification of synthetic nanoparticles with the intrinsic hallmarks of exosomes’ membrane to create exosome mimetics could allow for siRNA delivery in a safer and more efficient manner. Herein, connexin 43 (Cx43)-embedded, exosome-mimicking lipid bilayers coated chitosan nanoparticles (Cx43/L/CS NPs) were constructed by using cell-free (CF) synthesis systems with plasmids encoding Cx43 in the presence of lipid-coated CS NPs (L/CS NPs). The integration of de novo synthesized Cx43 into the lipid bilayers of L/CS NPs occurred cotranslationally during one-pot reaction and, more importantly, the integrated Cx43 was functionally active in transport. In addition to considerably lower cytotoxicity (<four-fold) than cationic Lipo 2000, the obtained Cx43/L/CS-siRNA NPs showed feasible cellular uptake and silencing efficacy that was significantly higher than free siRNA and CS-siRNA NPs. By using a gap junction (GJ) inhibitor, 18β-glycyrrhetinic acid, we demonstrated that Cx43 facilitated the delivery of siRNA into Cx43-expressing U87 MG cells. Additionally, the cellular entry of Cx43/L/CS-siRNA NPs may rely on different endocytic mechanisms, depending on the types of recipient cells. However, Cx43/L/CS-siRNA NPs still exhibited far from adequate delivery efficiency compared with transfection reagent Lipo 2000. Taken together, our study provides a brand new strategy to construct Cx43-functionalized, exosome-mimetic nanoparticles, which may further encourage the establishment of more biomimetic nanocarriers with higher biocompatibility and delivery efficiency. Significance of statement: The major issue to move RNA interference (RNAi) therapy from bench to bedside is the lack of safe and efficient delivery vehicles. Given the certain advantages and limitations of exosomes and synthetic nanocarriers, a promising strategy is to facilitate positive feedbacks between the two fields, in which the superiority of exosomes regarding special membrane composition beneficial for cytoplasmic delivery and the better pharmaceutical acceptance of synthetic nanocarriers could be combined. In this study, we reported to construct Cx43-integrated, exosome-mimetic lipid bilayers coated nanoparticles by using CF synthesis technique. The obtained Cx43/L/CS-siRNA NPs were characterized by desirable cytotoxicity profile and feasible delivery efficiency. This study provides a new avenue and insights for the synthesis of more biocompatible and effective bio-mimetic siRNA delivery platforms.

源语言英语
页(从-至)517-536
页数20
期刊Acta Biomaterialia
96
DOI
出版状态已出版 - 15 9月 2019
已对外发布

指纹

探究 'Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery' 的科研主题。它们共同构成独一无二的指纹。

引用此