CC-DenseUNet: Densely Connected U-Net with Criss-Cross Attention for Liver and Tumor Segmentation in CT Volumes

Qiang Li, Hong Song*, Weiwei Zhang, Jingfan Fan, Danni Ai, Yucong Lin, Jian Yang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

The automatic segmentation of liver and tumor is important for hepatic tumor surgery. In this paper, we propose a novel densely connected U-Net (CC-DenseUNet), which integrates criss-cross attention (CCA) module, to segment the liver and tumor in computed tomography (CT) volumes. The dense interconnections in CC-DenseUNet ensure the maximum information flow between encoder layers when extracting intraslice features of liver and tumors. Moreover, the CCA module is used in CC-DenseUNet to efficiently capture only the necessary and meaningful non-local contextual information of CT images containing liver or tumors. We evaluated the proposed CCDenseUNet on the Liver Tumor Segmentation Challenge and 3DIRCADb datasets. Experimental results show that our method outperformed the state-of-the-art methods in liver tumor segmentation and achieved a highly competitive performance in liver segmentation.

源语言英语
主期刊名Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
编辑Yufei Huang, Lukasz Kurgan, Feng Luo, Xiaohua Tony Hu, Yidong Chen, Edward Dougherty, Andrzej Kloczkowski, Yaohang Li
出版商Institute of Electrical and Electronics Engineers Inc.
966-971
页数6
ISBN(电子版)9781665401265
DOI
出版状态已出版 - 2021
活动2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 - Virtual, Online, 美国
期限: 9 12月 202112 12月 2021

出版系列

姓名Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021

会议

会议2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
国家/地区美国
Virtual, Online
时期9/12/2112/12/21

指纹

探究 'CC-DenseUNet: Densely Connected U-Net with Criss-Cross Attention for Liver and Tumor Segmentation in CT Volumes' 的科研主题。它们共同构成独一无二的指纹。

引用此