Category-aware next point-of-interest recommendation via listwise Bayesian personalized ranking

Jing He, Xin Li*, Lejian Liao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

94 引用 (Scopus)

摘要

Next Point-of-Interest (POI) recommendation has become an important task for location-based social networks (LBSNs). However, previous efforts suffer from the high computational complexity, besides the transition pattern between POIs has not been well studied. In this paper, we proposed a twofold approach for next POI recommendation. First, the preferred next category is predicted by using a third-rank tensor optimized by a Listwise Bayesian Personalized Ranking (LBPR) approach. Specifically we introduce two functions, namely Plackett-Luce model and cross entropy, to generate the likelihood of a ranking list for posterior computation. Then POI candidates filtered by the predicated category are ranked based on the spatial influence and category ranking influence. The experiments on two real-world datasets demonstrate the significant improvements of our methods over several state-ofthe-art methods.

源语言英语
主期刊名26th International Joint Conference on Artificial Intelligence, IJCAI 2017
编辑Carles Sierra
出版商International Joint Conferences on Artificial Intelligence
1837-1843
页数7
ISBN(电子版)9780999241103
DOI
出版状态已出版 - 2017
活动26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, 澳大利亚
期限: 19 8月 201725 8月 2017

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
0
ISSN(印刷版)1045-0823

会议

会议26th International Joint Conference on Artificial Intelligence, IJCAI 2017
国家/地区澳大利亚
Melbourne
时期19/08/1725/08/17

指纹

探究 'Category-aware next point-of-interest recommendation via listwise Bayesian personalized ranking' 的科研主题。它们共同构成独一无二的指纹。

引用此