TY - JOUR
T1 - Carbon capture and storage in China's power sector
T2 - Optimal planning under the 2 °C constraint
AU - Wang, Peng Tao
AU - Wei, Yi Ming
AU - Yang, Bo
AU - Li, Jia Quan
AU - Kang, Jia Ning
AU - Liu, Lan Cui
AU - Yu, Bi Ying
AU - Hou, Yun Bing
AU - Zhang, Xian
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Carbon capture and storage (CCS) has been widely recognized as a key technology to reduce CO2 emissions in the power sector. China's power sector needs to achieve large-scale emission reductions through CCS technologies to contribute to limiting the global temperature rise to less than 2℃. The best source–sink matching directly affects total mitigation costs for the power sector. However, China has not yet established an optimal CCS plan. This study evaluates the least-cost source–sink relationship and cluster development opportunities for CCS in China under the 2 °C constraint. The results show that 165 existing coal-fired power plants, which have an installed capacity of approximately 175 GW, need CCS retrofitting and can find a suitable CO2 storage site within an average radius of 115 km. The total captured CO2 is 17.42 billion tons in Northeast, North, East, Northwest, and South regions with the share of 10.79% (1.88 GtCO2), 31.29% (5.45 GtCO2), 35.25% (6.14GtCO2), 22.39% (3.90GtCO2), and 0.27% (47MtCO2), respectively. Approximately 90% of captured CO2 can be stored in the Songliao, Bohai Bay, and Subei basins. In addition, 23% of the emission reductions can be achieved through CO2-enhanced oil recovery. The total mitigation cost is USD 1212 billion and the revenue generated from CO2-enhanced oil recovery is USD 377 billion. Overall, it provides the least-cost source–sink layout and cluster development opportunities for CCS development under the 2 ℃ constraint, which can serve as a basis for large-scale CCS adoption in China.
AB - Carbon capture and storage (CCS) has been widely recognized as a key technology to reduce CO2 emissions in the power sector. China's power sector needs to achieve large-scale emission reductions through CCS technologies to contribute to limiting the global temperature rise to less than 2℃. The best source–sink matching directly affects total mitigation costs for the power sector. However, China has not yet established an optimal CCS plan. This study evaluates the least-cost source–sink relationship and cluster development opportunities for CCS in China under the 2 °C constraint. The results show that 165 existing coal-fired power plants, which have an installed capacity of approximately 175 GW, need CCS retrofitting and can find a suitable CO2 storage site within an average radius of 115 km. The total captured CO2 is 17.42 billion tons in Northeast, North, East, Northwest, and South regions with the share of 10.79% (1.88 GtCO2), 31.29% (5.45 GtCO2), 35.25% (6.14GtCO2), 22.39% (3.90GtCO2), and 0.27% (47MtCO2), respectively. Approximately 90% of captured CO2 can be stored in the Songliao, Bohai Bay, and Subei basins. In addition, 23% of the emission reductions can be achieved through CO2-enhanced oil recovery. The total mitigation cost is USD 1212 billion and the revenue generated from CO2-enhanced oil recovery is USD 377 billion. Overall, it provides the least-cost source–sink layout and cluster development opportunities for CCS development under the 2 ℃ constraint, which can serve as a basis for large-scale CCS adoption in China.
KW - CO-enhanced oil recovery
KW - Carbon capture and storage
KW - Coal-fired power plants
KW - Source–sink matching
UR - http://www.scopus.com/inward/record.url?scp=85079842652&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2020.114694
DO - 10.1016/j.apenergy.2020.114694
M3 - Article
AN - SCOPUS:85079842652
SN - 0306-2619
VL - 263
JO - Applied Energy
JF - Applied Energy
M1 - 114694
ER -