Can Appliances Understand the Behavior of Elderly Via Machine Learning? A Feasibility Study

Kun Qian*, Tomoya Koike, Kazuhiro Yoshiuchi, Bjorn W. Schuller, Yoshiharu Yamamoto

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)

摘要

Over the last half decade, fast development of the Internet of Things and machine learning (ML) made it feasible to leverage the power of artificial intelligence to facilitate a variety of intelligent systems in smart home. Nevertheless, the studies on designing specific computing technologies for helping elderly to enjoy a comfortable, convenient, and independent daily life are extremely limited. On the one hand, there are increasingly growing demands from the ageing society to implement the cutting edge technology enabling a better life quality for the elderly. On the other hand, there is still a lack on fundamental investigations, applicable infrastructures, and advanced data-driven frameworks. To this end, we propose a novel machine framework for analyzing the daily life behavior of elderly - all in this study are living alone - by the data collected from their home appliances, i.e., television and refrigerator. First, the interevent intervals for the use of the appliances collected in one month from 76 elderly are the raw data to describe the behaviors. Then, three ML paradigms are investigated and compared, which include 'classic' ML methods and the state-of-the-art deep learning approaches. Finally, we indicate the current findings and limitations in this feasibility study. Experimental results demonstrate that, our proposed method can reach performance peak at an unweighted average recall of 58.7% (chance level: 50.0%) in a subject-independent test for classifying symptom/nonsymptom days.

源语言英语
文章编号9295341
页(从-至)8343-8355
页数13
期刊IEEE Internet of Things Journal
8
10
DOI
出版状态已出版 - 15 5月 2021
已对外发布

指纹

探究 'Can Appliances Understand the Behavior of Elderly Via Machine Learning? A Feasibility Study' 的科研主题。它们共同构成独一无二的指纹。

引用此