@inproceedings{f006abf4cd7c42c094c2097a5e0c709d,
title = "CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds",
abstract = "We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D. Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels with the same semantic predictions, which considers semantic consistency and diverse locality abandoned in previous bottom-up approaches. Then, to recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module to directly aggregate fine-grained spatial information from backbone for further proposal refinement. It is memory-and-computation efficient and can better encode the geometry-specific features of each 3D proposal. Our model achieves state-of-the-art 3D detection performance with remarkable gains of +3.6% on ScanNet V2 and +2.6% on SUN RGB-D in term of mAP@0.25. Code will be available at https://github.com/Haiyang-W/CAGroup3D.",
author = "Haiyang Wang and Lihe Ding and Shaocong Dong and Shaoshuai Shi and Aoxue Li and Jianan Li and Zhenguo Li and Liwei Wang",
note = "Publisher Copyright: {\textcopyright} 2022 Neural information processing systems foundation. All rights reserved.; 36th Conference on Neural Information Processing Systems, NeurIPS 2022 ; Conference date: 28-11-2022 Through 09-12-2022",
year = "2022",
language = "English",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
editor = "S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh",
booktitle = "Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022",
}