CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds

Haiyang Wang, Lihe Ding, Shaocong Dong, Shaoshuai Shi*, Aoxue Li, Jianan Li, Zhenguo Li, Liwei Wang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

25 引用 (Scopus)

摘要

We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D. Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels with the same semantic predictions, which considers semantic consistency and diverse locality abandoned in previous bottom-up approaches. Then, to recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module to directly aggregate fine-grained spatial information from backbone for further proposal refinement. It is memory-and-computation efficient and can better encode the geometry-specific features of each 3D proposal. Our model achieves state-of-the-art 3D detection performance with remarkable gains of +3.6% on ScanNet V2 and +2.6% on SUN RGB-D in term of mAP@0.25. Code will be available at https://github.com/Haiyang-W/CAGroup3D.

源语言英语
主期刊名Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
编辑S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
出版商Neural information processing systems foundation
ISBN(电子版)9781713871088
出版状态已出版 - 2022
活动36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, 美国
期限: 28 11月 20229 12月 2022

出版系列

姓名Advances in Neural Information Processing Systems
35
ISSN(印刷版)1049-5258

会议

会议36th Conference on Neural Information Processing Systems, NeurIPS 2022
国家/地区美国
New Orleans
时期28/11/229/12/22

指纹

探究 'CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds' 的科研主题。它们共同构成独一无二的指纹。

引用此