Bridging The Gap: Entailment Fused-T5 for Open-retrieval Conversational Machine Reading Comprehension

Xiao Zhang, Heyan Huang*, Zewen Chi, Xian Ling Mao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Open-retrieval conversational machine reading comprehension (OCMRC) simulates real-life conversational interaction scenes. Machines are required to make a decision of Yes/No/Inquire or generate a follow-up question when the decision is Inquire based on retrieved rule texts, user scenario, user question and dialogue history. Recent studies try to reduce the information gap between decision-making and question generation, in order to improve the performance of generation. However, the information gap still persists because these methods are still limited in pipeline framework, where decision-making and question generation are performed separately, making it hard to share the entailment reasoning used in decision-making across all stages. To tackle the above problem, we propose a novel one-stage end-to-end framework, called Entailment Fused-T5 (EFT), to bridge the information gap between decision-making and question generation in a global understanding manner. The extensive experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on the OR-ShARC benchmark. Our model and code are publicly available.

源语言英语
主期刊名Long Papers
出版商Association for Computational Linguistics (ACL)
15374-15386
页数13
ISBN(电子版)9781959429722
出版状态已出版 - 2023
活动61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, 加拿大
期限: 9 7月 202314 7月 2023

出版系列

姓名Proceedings of the Annual Meeting of the Association for Computational Linguistics
1
ISSN(印刷版)0736-587X

会议

会议61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
国家/地区加拿大
Toronto
时期9/07/2314/07/23

指纹

探究 'Bridging The Gap: Entailment Fused-T5 for Open-retrieval Conversational Machine Reading Comprehension' 的科研主题。它们共同构成独一无二的指纹。

引用此