Brauer algebras, symplectic schur algebras and Schur-Weyl duality

Richard Dipper*, Stephen Doty, Jun Hu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

34 引用 (Scopus)

摘要

In this paper we prove the Schur-Weyl duality between the symplectic group and the Brauer algebra over an arbitrary infinite field K. We show that the natural homomorphism from the Brauer algebra Bn(-2m) to the endomorphism algebra of the tensor space (K2m)⊗n as a module over the symplectic similitude group GSp2m(K) (or equivalently, as a module over the symplectic group Sp2m(K)) is always surjective. Another surjectivity, that of the natural homomorphism from the group algebra for GSp2m(K) to the endomorphism algebra of (K2m)⊗n as a module over Bn(-2m), is derived as an easy consequence of S. Oehms's results [S. Oehms, J. Algebra (1) 244 (2001), 19-44].

源语言英语
页(从-至)189-213
页数25
期刊Transactions of the American Mathematical Society
360
1
DOI
出版状态已出版 - 1月 2008

指纹

探究 'Brauer algebras, symplectic schur algebras and Schur-Weyl duality' 的科研主题。它们共同构成独一无二的指纹。

引用此