摘要
We study global solutions of a class of chemotaxis-haptotaxis systems generalizing the prototype {ut=∇·((u+1)m-1∇u)-∇·(u(u+1)q-1∇v)-∇·(u(u+1)p-1∇w)+H(u,w),0=Δv-v+u, wt=-vw, in a bounded domain Ω ⊂ ℝN(N≥1) with smooth boundary, H(u,w):=u(1-ur-1-w), with parameters m≥1,r>1 and positive constants p,q. It is shown that either max{q+1,p,2p-m}<max{m+2/N,r} or max{q+1,p,2p-m}=r and b>0 is large enough, then for any sufficiently smooth initial data there exists a classical solution which is global in time and bounded. The results of this paper improve the results of Tao and Winkler (2014) [46,51].
源语言 | 英语 |
---|---|
页(从-至) | 1898-1909 |
页数 | 12 |
期刊 | Computers and Mathematics with Applications |
卷 | 71 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 1 5月 2016 |
指纹
探究 'Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model' 的科研主题。它们共同构成独一无二的指纹。引用此
Zheng, J., & Wang, Y. (2016). Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model. Computers and Mathematics with Applications, 71(9), 1898-1909. https://doi.org/10.1016/j.camwa.2016.03.014