TY - JOUR
T1 - Boosting Semi-Supervised Federated Learning with Model Personalization and Client-Variance-Reduction
AU - Wang, Shuai
AU - Xu, Yanqing
AU - Yuan, Yanli
AU - Wang, Xiuhua
AU - Quek, Tony Q.S.
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Recently, federated learning (FL) has been increasingly appealing in distributed signal processing and machine learning. Nevertheless, the practical challenges of label deficiency and client heterogeneity form a bottleneck to its wide adoption. Although numerous efforts have been devoted to semi- supervised FL, most of the adopted algorithms follow the same spirit as FedAvg, thus heavily suffering from the adverse effects caused by client heterogeneity. In this paper, we boost the semi-supervised FL by addressing the issue using model personalization and client-variance-reduction. In particular, we propose a novel and unified problem formulation based on pseudo-labeling and model interpolation. We then propose an effective algorithm, named FedCPSL, which judiciously adopts the schemes of a novel momentum-based client- variance-reduction and normalized averaging. Convergence property of FedCPSL is analyzed and shows that FedCPSL is resilient to client heterogeneity and obtains a sublinear convergence rate. Experimental results on image classification tasks are also presented to demonstrate the efficacy of FedCPSL over the benchmark algorithms.
AB - Recently, federated learning (FL) has been increasingly appealing in distributed signal processing and machine learning. Nevertheless, the practical challenges of label deficiency and client heterogeneity form a bottleneck to its wide adoption. Although numerous efforts have been devoted to semi- supervised FL, most of the adopted algorithms follow the same spirit as FedAvg, thus heavily suffering from the adverse effects caused by client heterogeneity. In this paper, we boost the semi-supervised FL by addressing the issue using model personalization and client-variance-reduction. In particular, we propose a novel and unified problem formulation based on pseudo-labeling and model interpolation. We then propose an effective algorithm, named FedCPSL, which judiciously adopts the schemes of a novel momentum-based client- variance-reduction and normalized averaging. Convergence property of FedCPSL is analyzed and shows that FedCPSL is resilient to client heterogeneity and obtains a sublinear convergence rate. Experimental results on image classification tasks are also presented to demonstrate the efficacy of FedCPSL over the benchmark algorithms.
KW - Semi-supervised learning
KW - client variance reduction
KW - federated learning
KW - model personalization
UR - http://www.scopus.com/inward/record.url?scp=85180410840&partnerID=8YFLogxK
U2 - 10.1109/ICASSP49357.2023.10096678
DO - 10.1109/ICASSP49357.2023.10096678
M3 - Conference article
AN - SCOPUS:85180410840
SN - 0736-7791
JO - Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
JF - Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
T2 - 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Y2 - 4 June 2023 through 10 June 2023
ER -