TY - GEN
T1 - Boosting Feedback Efficiency of Interactive Reinforcement Learning by Adaptive Learning from Scores
AU - Liu, Shukai
AU - Wu, Chenming
AU - Li, Ying
AU - Zhang, Liangjun
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Interactive reinforcement learning has shown promise in learning complex robotic tasks. However, the process can be human-intensive due to the requirement of a large amount of interactive feedback. This paper presents a new method that uses scores provided by humans instead of pairwise preferences to improve the feedback efficiency of interactive reinforcement learning. Our key insight is that scores can yield significantly more data than pairwise preferences. Specifically, we require a teacher to interactively score the full trajectories of an agent to train a behavioral policy in a sparse reward environment. To avoid unstable scores given by humans negatively impacting the training process, we propose an adaptive learning scheme. This enables the learning paradigm to be insensitive to imperfect or unreliable scores. We extensively evaluate our method for robotic locomotion and manipulation tasks. The results show that the proposed method can efficiently learn near-optimal policies by adaptive learning from scores while requiring less feedback compared to pairwise preference learning methods. The source codes are publicly available at https://github.com/SSKKai/Interactive-Scoring-IRL.
AB - Interactive reinforcement learning has shown promise in learning complex robotic tasks. However, the process can be human-intensive due to the requirement of a large amount of interactive feedback. This paper presents a new method that uses scores provided by humans instead of pairwise preferences to improve the feedback efficiency of interactive reinforcement learning. Our key insight is that scores can yield significantly more data than pairwise preferences. Specifically, we require a teacher to interactively score the full trajectories of an agent to train a behavioral policy in a sparse reward environment. To avoid unstable scores given by humans negatively impacting the training process, we propose an adaptive learning scheme. This enables the learning paradigm to be insensitive to imperfect or unreliable scores. We extensively evaluate our method for robotic locomotion and manipulation tasks. The results show that the proposed method can efficiently learn near-optimal policies by adaptive learning from scores while requiring less feedback compared to pairwise preference learning methods. The source codes are publicly available at https://github.com/SSKKai/Interactive-Scoring-IRL.
UR - http://www.scopus.com/inward/record.url?scp=85182525943&partnerID=8YFLogxK
U2 - 10.1109/IROS55552.2023.10341990
DO - 10.1109/IROS55552.2023.10341990
M3 - Conference contribution
AN - SCOPUS:85182525943
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 7561
EP - 7567
BT - 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Y2 - 1 October 2023 through 5 October 2023
ER -