Blind S3D image quality prediction using classical and non-classical receptive field models

Lixiong Liu, Jiufa Zhang, Michele A. Saad, Hua Huang*, Alan Conrad Bovik

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

We develop a novel no-reference image quality assessment model for stereoscopic 3D (S3D) images that is inspired by functional receptive field models of perceptual mechanisms in primary visual cortex (V1). The approach is called the Blind S3D Integrated Quality Evaluator (BSIQE). BSIQE simulates monocular and binocular responses to stereo views using channel separation and weighted multi-channel combination models. Binocular responses are modeled as the fusion of the two channels using a weighted multi-channel combination. The responses to stereoscopic image content of both classical and non-classical anisotropic receptive fields are then modeled based on a determination of the relative importance of the receptive field responses. In the last stage of feature extraction, we deploy a simple and efficient way of decorrelating the picture data. We extract local binary pattern (LBP) statistical features from the computed receptive field responses, and use them to train a regressor to predict the perceptual quality of stereoscopic images. We carefully evaluate BSIQE on four public-domain 3D image quality databases, and find that it is statistically superior to all compared 2D and 3D IQA algorithms. BSIQE exhibits good performance across the datasets suggesting that it is general, and it has relatively low complexity.

源语言英语
文章编号115915
期刊Signal Processing: Image Communication
87
DOI
出版状态已出版 - 9月 2020

指纹

探究 'Blind S3D image quality prediction using classical and non-classical receptive field models' 的科研主题。它们共同构成独一无二的指纹。

引用此