Blind Hyperspectral Unmixing using Dual Branch Deep Autoencoder with Orthogonal Sparse Prior

Zeyang Dou, Kun Gao, Xiaodian Zhang, Hong Wang, Junwei Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

7 引用 (Scopus)

摘要

Blind hyperspectral unmixing has become an important task for hyperspectral applications. In this paper, we propose a dual branch autoencoder with a novel sparse prior to simultaneously extract endmembers and abundances from the raw HSI. The dual branch structure extends the linear mixing model by only modeling linear mixtures of the endmembers and treating the bilinear interactions as error. In this way, the proposed model doesn't require the assumptions of explicit forms of bilinear interactions. The proposed sparse prior, named as orthogonal sparse prior, is based on the key observation that the abundance vector of one pixel is very sparse, there are often no more than two non-zero elements. Different from the conventional norm-based sparse prior which assumes the abundance maps are independent, the orthogonal sparse prior explores the orthogonality between the abundance maps. Extensive experiments on two real datasets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to 50% improvements.

源语言英语
主期刊名2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2428-2432
页数5
ISBN(电子版)9781509066315
DOI
出版状态已出版 - 5月 2020
活动2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, 西班牙
期限: 4 5月 20208 5月 2020

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

会议

会议2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国家/地区西班牙
Barcelona
时期4/05/208/05/20

指纹

探究 'Blind Hyperspectral Unmixing using Dual Branch Deep Autoencoder with Orthogonal Sparse Prior' 的科研主题。它们共同构成独一无二的指纹。

引用此