Blind face restoration: Benchmark datasets and a baseline model

Puyang Zhang, Kaihao Zhang, Wenhan Luo, Changsheng Li*, Guoren Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 8
  • Captures
    • Readers: 17
see details

摘要

Blind Face Restoration (BFR) aims to generate high-quality face images from low-quality inputs. However, existing BFR methods often use private datasets for training and evaluation, making it challenging for future approaches to compare fairly. To address this issue, we introduce two benchmark datasets, BFRBD128 and BFRBD512, for evaluating state-of-the-art methods in five scenarios: blur, noise, low resolution, JPEG compression artifacts, and full degradation. We use seven standard quantitative metrics and two task-specific metrics, AFLD and AFICS. Additionally, we propose an efficient baseline model called Swin Transformer U-Net (STUNet), which outperforms state-of-the-art methods in various BFR tasks. The codes, datasets, and trained models are publicly available at: https://github.com/bitzpy/Blind-Face-Restoration-Benchmark-Datasets-and-a-Baseline-Model.

源语言英语
文章编号127271
期刊Neurocomputing
574
DOI
出版状态已出版 - 14 3月 2024

指纹

探究 'Blind face restoration: Benchmark datasets and a baseline model' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, P., Zhang, K., Luo, W., Li, C., & Wang, G. (2024). Blind face restoration: Benchmark datasets and a baseline model. Neurocomputing, 574, 文章 127271. https://doi.org/10.1016/j.neucom.2024.127271