TY - JOUR
T1 - Bismuth-impregnated aluminum/copper oxide-pillared montmorillonite for efficient vapor iodine sorption
AU - Tesfay Reda, Alemtsehay
AU - Zhang, Dongxiang
AU - Xu, Xiyan
AU - Pan, Meng
AU - Chang, Cui
AU - Muhire, Constantin
AU - Liu, Xiaoru
AU - Jiayi, Sun
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - AlCu-oxides pillared Montmorillonite (MMN) was synthesized by the ion-exchange reaction and then impregnated by bismuth (Bi) to produce single-phase material (Bi@AlCu-PILC) aiming at vapor iodine (I2) capture. The resulting Bi@AlCu-PILC mesoporous material demonstrated high capture capacity and thermal stability. The displayed capture capacity, 485 ± 54 mg-I/g-sorbent, was benefited from the strong affinity of Bi to iodine and the pores of the material. The gaseous I2 was captured chemically by Bi@AlCu-PILC via Bi-O-I and BiI3 formation in the inner surface of the AlCu-PILC and pillars, respectively. In addition to the chemisorption, molecular I2 was captured physically in the pores of the material. The stability of the iodine-containing material was investigated by a leaching experiment before and after Bi2O3 treatment of the material. Without Bi2O3 treatment, Bi@AlCu-PILC-I showed 22.12 mass% iodine losses after exposure to hot aqueous media for 7 days. On the other hand, after the post-sorption treatment at 500 °C, the iodine loss was only 0.75 mass% under similar conditions, indicating the material is stabilized significantly after the treatment. Post-sorption treatment of Bi@AlCu-PILC-I by Bi2O3 at high temperature transformed BiI3 into a more thermally durable form (Bi-O-I). These results indicate that Bi@AlCu-PILC is a promising material for vapor iodine capture and subsequent final disposal.
AB - AlCu-oxides pillared Montmorillonite (MMN) was synthesized by the ion-exchange reaction and then impregnated by bismuth (Bi) to produce single-phase material (Bi@AlCu-PILC) aiming at vapor iodine (I2) capture. The resulting Bi@AlCu-PILC mesoporous material demonstrated high capture capacity and thermal stability. The displayed capture capacity, 485 ± 54 mg-I/g-sorbent, was benefited from the strong affinity of Bi to iodine and the pores of the material. The gaseous I2 was captured chemically by Bi@AlCu-PILC via Bi-O-I and BiI3 formation in the inner surface of the AlCu-PILC and pillars, respectively. In addition to the chemisorption, molecular I2 was captured physically in the pores of the material. The stability of the iodine-containing material was investigated by a leaching experiment before and after Bi2O3 treatment of the material. Without Bi2O3 treatment, Bi@AlCu-PILC-I showed 22.12 mass% iodine losses after exposure to hot aqueous media for 7 days. On the other hand, after the post-sorption treatment at 500 °C, the iodine loss was only 0.75 mass% under similar conditions, indicating the material is stabilized significantly after the treatment. Post-sorption treatment of Bi@AlCu-PILC-I by Bi2O3 at high temperature transformed BiI3 into a more thermally durable form (Bi-O-I). These results indicate that Bi@AlCu-PILC is a promising material for vapor iodine capture and subsequent final disposal.
KW - Al/Cu-polyoxocation
KW - Bismuth-impregnated pillared clay
KW - Chemical durability
KW - Efficient iodine capture
KW - Montmorillonite
UR - http://www.scopus.com/inward/record.url?scp=85105058435&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2021.118848
DO - 10.1016/j.seppur.2021.118848
M3 - Article
AN - SCOPUS:85105058435
SN - 1383-5866
VL - 270
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 118848
ER -