摘要
Only for some special nonholonomic constrained systems can a canonical Hamiltonian structure be realized. Based on a reduction of a nonholonomic system to a conditional holonomic system, a universal symplectic structure for a constrained system can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics, which preserves symbiotic character among derivability from a variational principle, Lie algebra and symplectic geometry. Two examples are presented.
源语言 | 英语 |
---|---|
页(从-至) | 313-322 |
页数 | 10 |
期刊 | Reports on Mathematical Physics |
卷 | 47 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 6月 2001 |
指纹
探究 'Birkhoffian formulations of nonholonomic constrained systems' 的科研主题。它们共同构成独一无二的指纹。引用此
Guo, Y. X., Luo, S. K., Shang, M., & Mei, F. X. (2001). Birkhoffian formulations of nonholonomic constrained systems. Reports on Mathematical Physics, 47(3), 313-322. https://doi.org/10.1016/S0034-4877(01)80046-X