Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors

Kang Wang, Zheng Lou, Lili Wang*, Lianjia Zhao, Shufang Zhao, Dongyi Wang, Wei Han, Kai Jiang, Guozhen Shen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

338 引用 (Scopus)

摘要

Achieving high deformability in response to minimal external stimulation while maximizing human-machine interactions is a considerable challenge for wearable and flexible electronics applications. Various natural materials or living organisms consisting of hierarchical or interlocked structures exhibit combinations of properties (e.g., natural elasticity and flexibility) that do not occur in conventional materials. The interlocked epidermal-dermal microbridges in human skin have excellent elastic moduli, which enhance and amplify received tactile signal transport. Herein, we use the sensing mechanisms inspired by human skin to develop Ti3C2/natural microcapsule biocomposite films that are robust and deformable by mimicking the micro/nanoscale structure of human skin - such as the hierarchy, interlocking, and patterning. The interlocked hierarchical structures can be used to create biocomposite films with excellent elastic moduli (0.73 MPa), capable of high deformability in response to various external stimuli, as verified by employing theoretical studies. The flexible sensor with a hierarchical and interlocked structure (24.63 kPa-1) achieves a 9.4-fold increase in pressure sensitivity compared to that of the planar structured Ti3C2-based flexible sensor (2.61 kPa-1). This device also exhibits a rapid response rate (14 ms) and good cycling reproducibility and stability (5000 times). In addition, the flexible pressure device can be used to detect and discriminate signals ranging from finger motion and human pulses to voice recognition.

源语言英语
页(从-至)9139-9147
页数9
期刊ACS Nano
13
8
DOI
出版状态已出版 - 27 8月 2019
已对外发布

指纹

探究 'Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors' 的科研主题。它们共同构成独一无二的指纹。

引用此