Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation

Zihou Wei, Tao Sun, Shingo Shimoda, Zhe Chen, Xie Chen, Huaping Wang, Qiang Huang, Toshio Fukuda, Qing Shi*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

16 引用 (Scopus)

摘要

Collagen provides a promising environment for 3D nerve cell culture; however, the function of perfusion culture and cell-growth guidance is difficult to integrate into such an environment to promote cell growth. In this paper, we develop a bio-inspired design method for constructing a perfusion culture platform for guided nerve cell growth and differentiation in collagen. Based on the anatomical structure of peripheral neural tissue, a biomimetic porous structure (BPS) is fabricated by two-photon polymerization of IP-Visio. The micro-capillary effect is then utilized to facilitate the self-assembly of cell encapsulated collagen into the BPS. 3D perfusion culture can be rapidly implemented by inserting the cell-filled BPS into a pipette tip connected with syringe pumps. Furthermore, we investigate the nerve cell behavior in the BPS. 7-channel aligned cellular structures surrounded with a Schwann cell layer can be stably formed after a long-time perfusion culture. Differentiation of PC12 cells and mouse neural stem cells shows 3D neurite outgrowth alignment and elongation in collagen. The calcium activities of differentiated PC12 cells are visualized for confirming the preliminary formation of cell function. These results demonstrate that the proposed bio-inspired 3D cell culture platform with the advantages of miniaturization, structure complexity and perfusion has great potential for future application in the study of nerve regeneration and drug screening.

源语言英语
页(从-至)1006-1017
页数12
期刊Lab on a Chip
22
5
DOI
出版状态已出版 - 7 3月 2022

指纹

探究 'Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation' 的科研主题。它们共同构成独一无二的指纹。

引用此