Bias-variance analysis in estimating true query model for information retrieval

Peng Zhang, Dawei Song*, Jun Wang, Yuexian Hou

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 13
  • Captures
    • Readers: 19
see details

摘要

The estimation of query model is an important task in language modeling (LM) approaches to information retrieval (IR). The ideal estimation is expected to be not only effective in terms of high mean retrieval performance over all queries, but also stable in terms of low variance of retrieval performance across different queries. In practice, however, improving effectiveness can sacrifice stability, and vice versa. In this paper, we propose to study this tradeoff from a new perspective, i.e.; the bias-variance tradeoff, which is a fundamental theory in statistics. We formulate the notion of bias-variance regarding retrieval performance and estimation quality of query models. We then investigate several estimated query models, by analyzing when and why the bias-variance tradeoff will occur, and how the bias and variance can be reduced simultaneously. A series of experiments on four TREC collections have been conducted to systematically evaluate our bias-variance analysis. Our approach and results will potentially form an analysis framework and a novel evaluation strategy for query language modeling.

源语言英语
页(从-至)199-217
页数19
期刊Information Processing and Management
50
1
DOI
出版状态已出版 - 2014
已对外发布

指纹

探究 'Bias-variance analysis in estimating true query model for information retrieval' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, P., Song, D., Wang, J., & Hou, Y. (2014). Bias-variance analysis in estimating true query model for information retrieval. Information Processing and Management, 50(1), 199-217. https://doi.org/10.1016/j.ipm.2013.08.004