TY - JOUR
T1 - Benchmarking Micro-action Recognition
T2 - Dataset, Method, and Application
AU - Guo, Dan
AU - Li, Kun
AU - Hu, Bin
AU - Zhang, Yan
AU - Wang, Meng
N1 - Publisher Copyright:
IEEE
PY - 2024
Y1 - 2024
N2 - Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of individuals and is important for human-oriented applications such as emotion recognition and psychological assessment. However, the identification, differentiation, and understanding of micro-actions pose challenges due to the imperceptible and inaccessible nature of these subtle human behaviors in everyday life. In this study, we innovatively collect a new micro-action dataset designated as Micro-action-52 (MA-52), and propose a benchmark named micro-action network (MANet) for micro-action recognition (MAR) task. Uniquely, MA-52 provides the whole-body perspective including gestures, upper- and lower-limb movements, attempting to reveal comprehensive micro-action cues. In detail, MA-52 contains 52 micro-action categories along with seven body part labels, and encompasses a full array of realistic and natural micro-actions, accounting for 205 participants and 22,422 video instances collated from the psychological interviews. Based on the proposed dataset, we assess MANet and other nine prevalent action recognition methods. MANet incorporates squeeze-and-excitation (SE) and temporal shift module (TSM) into the ResNet architecture for modeling the spatiotemporal characteristics of micro-actions. Then a joint-embedding loss is designed for semantic matching between video and action labels; the loss is used to better distinguish between visually similar yet distinct micro-action categories. The extended application in emotion recognition has demonstrated one of the important values of our proposed dataset and method. In the future, further exploration of human behaviour, emotion, and psychological assessment will be conducted in depth. The dataset and source code are released at https://github.com/VUT-HFUT/Micro-Action.
AB - Micro-action is an imperceptible non-verbal behaviour characterised by low-intensity movement. It offers insights into the feelings and intentions of individuals and is important for human-oriented applications such as emotion recognition and psychological assessment. However, the identification, differentiation, and understanding of micro-actions pose challenges due to the imperceptible and inaccessible nature of these subtle human behaviors in everyday life. In this study, we innovatively collect a new micro-action dataset designated as Micro-action-52 (MA-52), and propose a benchmark named micro-action network (MANet) for micro-action recognition (MAR) task. Uniquely, MA-52 provides the whole-body perspective including gestures, upper- and lower-limb movements, attempting to reveal comprehensive micro-action cues. In detail, MA-52 contains 52 micro-action categories along with seven body part labels, and encompasses a full array of realistic and natural micro-actions, accounting for 205 participants and 22,422 video instances collated from the psychological interviews. Based on the proposed dataset, we assess MANet and other nine prevalent action recognition methods. MANet incorporates squeeze-and-excitation (SE) and temporal shift module (TSM) into the ResNet architecture for modeling the spatiotemporal characteristics of micro-actions. Then a joint-embedding loss is designed for semantic matching between video and action labels; the loss is used to better distinguish between visually similar yet distinct micro-action categories. The extended application in emotion recognition has demonstrated one of the important values of our proposed dataset and method. In the future, further exploration of human behaviour, emotion, and psychological assessment will be conducted in depth. The dataset and source code are released at https://github.com/VUT-HFUT/Micro-Action.
KW - Foot
KW - Interviews
KW - Legged locomotion
KW - Mars
KW - Psychology
KW - Semantics
KW - Task analysis
KW - action analysis
KW - action recognition
KW - body language
KW - human behavioral analysis
KW - micro-action
UR - http://www.scopus.com/inward/record.url?scp=85183976933&partnerID=8YFLogxK
U2 - 10.1109/TCSVT.2024.3358415
DO - 10.1109/TCSVT.2024.3358415
M3 - Article
AN - SCOPUS:85183976933
SN - 1051-8215
SP - 1
JO - IEEE Transactions on Circuits and Systems for Video Technology
JF - IEEE Transactions on Circuits and Systems for Video Technology
ER -