Beam Steering for Array Antenna Based on Deep Learning

Ziyang Liang, Hongwei Gao, Cheng Jin, Jinshan Deng

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we propose an algorithm based on deep learning for beam steering with an array antenna. Array factors are often used for beam steering problems, but because array factors cannot handle coupling influence between array antenna elements and edge effect, A deep neural network is designed to learn the physics of beam steering from data computed by array factor (AF) theory and the active element pattern (AEP). Putting the phases predicted by neural network and phases predicted by AF into simulated software to compare the main lobe direction. The results show that the trained deep neural network's output phases fulfilling the input main lobe direction requirement and it takes the coupling influence between array antenna elements into account.

源语言英语
主期刊名2023 International Applied Computational Electromagnetics Society Symposium, ACES-China 2023
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781733509657
DOI
出版状态已出版 - 2023
活动2023 International Applied Computational Electromagnetics Society Symposium, ACES-China 2023 - Hangzhou, 中国
期限: 15 8月 202318 8月 2023

出版系列

姓名2023 International Applied Computational Electromagnetics Society Symposium, ACES-China 2023

会议

会议2023 International Applied Computational Electromagnetics Society Symposium, ACES-China 2023
国家/地区中国
Hangzhou
时期15/08/2318/08/23

指纹

探究 'Beam Steering for Array Antenna Based on Deep Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此