TY - JOUR
T1 - BaCo0.4Fe0.4Nb0.1Sc0.1O3-δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode
AU - Lu, Chengyi
AU - Ren, Rongzheng
AU - Zhu, Ziwei
AU - Pan, Guang
AU - Wang, Gaige
AU - Xu, Chunming
AU - Qiao, Jinshuo
AU - Sun, Wang
AU - Huang, Qiaogao
AU - Liang, Hairui
AU - Wang, Zhenhua
AU - Sun, Kening
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/9/15
Y1 - 2023/9/15
N2 - Proton ceramic electrolytic cells (PCECs) are regarded as superior candidates for largescale hydrogen production by water electrolytic because they are efficient and weakly temperature-dependent. However, the intrinsically poor water-storage capability (hydration) and slow proton mobility of traditional PCEC oxygen electrodes retards the activity of electrochemical water decomposition to oxygen. The sluggish decomposition process has prevented the extensive application of PCECs. Herein, we report a Nb5+ and Sc3+ co-doped BaCo0.4Fe0.4Nb0.1Sc0.1O3-δ (BCFNS) perovskite oxygen electrode that exhibits remarkably low polarization resistances (e.g., 0.079 Ω·cm2 at 650 °C) in air humidified with 3 vol% H2O. Both experiments and computational calculations linked this high performance to the synergistic effect of Nb5+ and Sc3+ in tuning the oxygen-vacancy concentration and the hydration reaction between oxygen vacancies and water molecules. This unique synergistic mechanism endows BCFNS with strong hydration capacity, boosting the formation of protonic defects and reducing the proton-migration barrier. Benefiting from these features, a single PCEC with a BCFNS oxygen electrode achieved much higher current densities than newly reported PCECs: 1224.91, 914.05, 622.18, and 314.89 mAcm−2 at 1.3 V and 650 °C, 600 °C, 550 °C, and 500 °C, respectively. Such excellent electrolytic performance suggests that Nb5+ and Sc3+ co-doping can promote the hydration capability and proton mobility of electrode materials for high-performance PCECs.
AB - Proton ceramic electrolytic cells (PCECs) are regarded as superior candidates for largescale hydrogen production by water electrolytic because they are efficient and weakly temperature-dependent. However, the intrinsically poor water-storage capability (hydration) and slow proton mobility of traditional PCEC oxygen electrodes retards the activity of electrochemical water decomposition to oxygen. The sluggish decomposition process has prevented the extensive application of PCECs. Herein, we report a Nb5+ and Sc3+ co-doped BaCo0.4Fe0.4Nb0.1Sc0.1O3-δ (BCFNS) perovskite oxygen electrode that exhibits remarkably low polarization resistances (e.g., 0.079 Ω·cm2 at 650 °C) in air humidified with 3 vol% H2O. Both experiments and computational calculations linked this high performance to the synergistic effect of Nb5+ and Sc3+ in tuning the oxygen-vacancy concentration and the hydration reaction between oxygen vacancies and water molecules. This unique synergistic mechanism endows BCFNS with strong hydration capacity, boosting the formation of protonic defects and reducing the proton-migration barrier. Benefiting from these features, a single PCEC with a BCFNS oxygen electrode achieved much higher current densities than newly reported PCECs: 1224.91, 914.05, 622.18, and 314.89 mAcm−2 at 1.3 V and 650 °C, 600 °C, 550 °C, and 500 °C, respectively. Such excellent electrolytic performance suggests that Nb5+ and Sc3+ co-doping can promote the hydration capability and proton mobility of electrode materials for high-performance PCECs.
KW - Hydration
KW - Oxygen electrode
KW - Perovskite oxide
KW - Proton ceramic electrolytic cell
KW - Proton transfer
KW - Triple conducting oxides
UR - http://www.scopus.com/inward/record.url?scp=85166016299&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.144878
DO - 10.1016/j.cej.2023.144878
M3 - Article
AN - SCOPUS:85166016299
SN - 1385-8947
VL - 472
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 144878
ER -