TY - JOUR
T1 - Backtracking Reconstruction Network for Three-Dimensional Compressed Hyperspectral Imaging
AU - Wang, Xi
AU - Xu, Tingfa
AU - Zhang, Yuhan
AU - Fan, Axin
AU - Xu, Chang
AU - Li, Jianan
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - Compressed sensing (CS) has been widely used in hyperspectral (HS) imaging to obtain hyperspectral data at a sub-Nyquist sampling rate, lifting the efficiency of data acquisition. Yet, reconstructing the acquired HS data via iterative algorithms is time consuming, which hinders the real-time application of compressed HS imaging. To alleviate this problem, this paper makes the first attempt to adopt convolutional neural networks (CNNs) to reconstruct three-dimensional compressed HS data by backtracking the entire imaging process, leading to a simple yet effective network, dubbed the backtracking reconstruction network (BTR-Net). Concretely, we leverage the divide-and-conquer method to divide the imaging process based on coded aperture tunable filter (CATF) spectral imager into steps, and build a subnetwork for each step to specialize in its reverse process. Consequently, BTR-Net introduces multiple built-in networks which performs spatial initialization, spatial enhancement, spectral initialization and spatial–spectral enhancement in an independent and sequential manner. Extensive experiments show that BTR-Net can reconstruct compressed HS data quickly and accurately, which outperforms leading iterative algorithms both quantitatively and visually, while having superior resistance to noise.
AB - Compressed sensing (CS) has been widely used in hyperspectral (HS) imaging to obtain hyperspectral data at a sub-Nyquist sampling rate, lifting the efficiency of data acquisition. Yet, reconstructing the acquired HS data via iterative algorithms is time consuming, which hinders the real-time application of compressed HS imaging. To alleviate this problem, this paper makes the first attempt to adopt convolutional neural networks (CNNs) to reconstruct three-dimensional compressed HS data by backtracking the entire imaging process, leading to a simple yet effective network, dubbed the backtracking reconstruction network (BTR-Net). Concretely, we leverage the divide-and-conquer method to divide the imaging process based on coded aperture tunable filter (CATF) spectral imager into steps, and build a subnetwork for each step to specialize in its reverse process. Consequently, BTR-Net introduces multiple built-in networks which performs spatial initialization, spatial enhancement, spectral initialization and spatial–spectral enhancement in an independent and sequential manner. Extensive experiments show that BTR-Net can reconstruct compressed HS data quickly and accurately, which outperforms leading iterative algorithms both quantitatively and visually, while having superior resistance to noise.
KW - computational imaging
KW - convolutional neural network
KW - hyperspectral imaging
KW - image reconstruction
UR - http://www.scopus.com/inward/record.url?scp=85130788161&partnerID=8YFLogxK
U2 - 10.3390/rs14102406
DO - 10.3390/rs14102406
M3 - Article
AN - SCOPUS:85130788161
SN - 2072-4292
VL - 14
JO - Remote Sensing
JF - Remote Sensing
IS - 10
M1 - 2406
ER -