AUA-dE: An Adaptive Uncertainty Guided Attention for Diffusion MRI Models Estimation

Tianshu Zheng, Ruicheng Ba, Xiaoli Wang, Chuyang Ye, Dan Wu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Diffusion MRI (dMRI) is a well-established tool for probing tissue microstructure properties. However, advanced dMRI models commonly have multiple compartments that are highly nonlinear and complex, and also require dense sampling in q-space. These problems have been investigated using deep learning based techniques. In existing approaches, the labels were calculated from the fully sampled q-space as the ground truth. However, for some of the dMRI models, dense sampling is hard to achieve due to the long scan time, and the low signal-to-noise ratio could lead to noisy labels that make it hard for the network to learn the relationship between the signals and labels. A good example is the time-dependent dMRI (TD-dMRI), which captures the microstructural size and transmembrane exchange by measuring the signal at varying diffusion times but requires dense sampling in both q-space and t-space. To overcome the noisy label problem and accelerate the acquisition, in this work, we proposed an adaptive uncertainty guided attention for diffusion MRI models estimation (AUA-dE) to estimate the microstructural parameters in the TD-dMRI model. We evaluated our proposed method with three different downsampling strategies, including q-space downsampling, t-space downsampling, and q-t space downsampling, on two different datasets: a simulation dataset and an experimental dataset from normal and injured rat brains. Our proposed method achieved the best performance compared to the previous q-space learning methods and the conventional optimization methods in terms of accuracy and robustness.

源语言英语
主期刊名Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
编辑Hayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
出版商Springer Science and Business Media Deutschland GmbH
142-151
页数10
ISBN(印刷版)9783031439926
DOI
出版状态已出版 - 2023
活动26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, 加拿大
期限: 8 10月 202312 10月 2023

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14227 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
国家/地区加拿大
Vancouver
时期8/10/2312/10/23

指纹

探究 'AUA-dE: An Adaptive Uncertainty Guided Attention for Diffusion MRI Models Estimation' 的科研主题。它们共同构成独一无二的指纹。

引用此