摘要
The asymmetric massive multiple-input–multiple-output (MIMO) array improves system capacity and provides wide-area coverage for the Internet of Things (IoT). In this paper, we propose a novel attention-based model for path loss (PL) prediction in asymmetric massive MIMO IoT systems. To represent the propagation characteristics, the propagation image that considers the detailed environment, beamwidth pattern, and propagation-statistics feature is designed. Benefiting from the shuffle attention computation, the proposed model, termed a shuffle-attention-based convolutional neural network (SAN), can effectively extract the detailed features of the propagation scenario from the image. Besides, we design the beamwidth-scenario transfer learning (BWSTL) algorithm to assist the SAN model in predicting PL in the new asymmetric massive MIMO IoT systems, where the beamwidth configuration and propagation scenario are different. It is shown that the proposed model outperforms the empirical model and other state-of-the-art artificial intelligence-based models. Aided by the BWSTL algorithm, the SAN model can be transferred to new propagation conditions with limited samples, which is beneficial to the fast deployment in the new asymmetric massive MIMO IoT systems.
源语言 | 英语 |
---|---|
文章编号 | 107905 |
期刊 | Computer Communications |
卷 | 226-227 |
DOI | |
出版状态 | 已出版 - 1 10月 2024 |