Atomized Mg-Li spherical alloys: A new strategy for promoting reactivity of Mg

Wanjun Zhao*, Xinyue Tang, Jianxin Li, Wei Le, Qingjie Jiao, Dazhi Liu, Yuxin Jia

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

In this study, to improve the reactivity Mg, which is a frequently used fuel, Li was incorporated into it. Mg-Li alloys with 3 and 5 wt% Li, prepared via centrifugal atomization, displayed a high degree of sphericity and consisted of αMg. Thermal behaviors indicated that the initiation oxidization temperature of Mg-Li powders was ∼170–200°C lower than that of pure Mg, owing to the lower melting point of soluble Li than that of Mg. Li passes through oxide shells and initiates the oxidization of metals in the core. The apparent activation energy of Mg decreased significantly from ∼361.2 kJ/mol to ∼141.1 kJ/mol with the incorporation of Li. For combustion in air, the Li content should be 5 wt% to achieve increased combustion intensity compared to Mg powders. When Mg-Li alloys and Mg powders were composited with polytetrafluorethylene (PTFE) serving as an oxidizer, the burn rates of MgLi3/PTFE and MgLi5/PTFE were ∼7.1 and 12.1 m/s, respectively, which were ∼1.8 and 6.8 m/s higher than that of Mg/PTFE. The flame temperature of Mg-Li/PTFE (∼1537–1552℃) of 3–5 µm was slightly lower than that of Mg/PTFE (∼1637℃). Therefore, the prepared Mg-Li alloys are promising candidates for use as fuels for energetic materials.

源语言英语
文章编号174974
期刊Journal of Alloys and Compounds
998
DOI
出版状态已出版 - 5 9月 2024

指纹

探究 'Atomized Mg-Li spherical alloys: A new strategy for promoting reactivity of Mg' 的科研主题。它们共同构成独一无二的指纹。

引用此