Atomistic mechanism of phase transformation between topologically close-packed complex intermetallics

Huixin Jin, Jianxin Zhang*, Pan Li, Youjian Zhang, Wenyang Zhang, Jingyu Qin, Lihua Wang, Haibo Long, Wei Li, Ruiwen Shao, En Ma*, Ze Zhang, Xiaodong Han*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

22 引用 (Scopus)

摘要

Understanding how topologically close-packed phases (TCPs) transform between one another is one of the challenging puzzles in solid-state transformations. Here we use atomic-resolved tools to dissect the transition among TCPs, specifically the μ and P (or σ) phases in nickel-based superalloys. We discover that the P phase originates from intrinsic (110) faulted twin boundaries (FTB), which according to first-principles calculations is of extraordinarily low energy. The FTB sets up a pathway for the diffusional in-flux of the smaller 3d transition metal species, creating a Frank interstitial dislocation loop. The climb of this dislocation, with an unusual Burgers vector that displaces neighboring atoms into the lattice positions of the product phase, accomplishes the structural transformation. Our findings reveal an intrinsic link among these seemingly unrelated TCP configurations, explain the role of internal lattice defects in facilitating the phase transition, and offer useful insight for alloy design that involves different complex phases.

源语言英语
文章编号2487
期刊Nature Communications
13
1
DOI
出版状态已出版 - 12月 2022

指纹

探究 'Atomistic mechanism of phase transformation between topologically close-packed complex intermetallics' 的科研主题。它们共同构成独一无二的指纹。

引用此