摘要
This paper considers the existence and asymptotic behavior of solutions to the angiogenesis system pt = Δp - ρ∇ (p∇w) + λp(1-p), wt =-ypwβ in a bounded smooth domain Ω ⊂ RN(N = 1, 2), where p, λ, y > 0 and β ≥ 1. More precisely, it is shown that the corresponding solution (p, w) converges to (1, 0) with an explicit exponential rate if β = 1, and polynomial rate if β > 1 as t → ∞, respectively, in L∞-norm.
源语言 | 英语 |
---|---|
文章编号 | 664 |
期刊 | Mathematics |
卷 | 8 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 1 5月 2020 |