Approximate parameter tuning of support vector machines

Shizhong Liao*, Chenhao Yang, Lizhong Ding

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Parameter Tuning is an indispensable step to guarantee generalization of support vector machines (SVM). Previous methods can be reduced to a nested two-layer framework, where the inner layer solves a convex optimization problem, and the outer layer selects the hyper-parameters by minimizing either cross validation error or other error bounds. In this paper, we propose a novel efficient parameter tuning approach via kernel matrix approximation, focusing on the efficiency improvement of SVM training in the inner layer. We first develop a kernel matrix approximation algorithm MoCIC. Then, we apply MoCIC to compute a low-rank approximation of the kernel matrix, and then use the approximate matrix to approximately solve the quadratic programming of SVM, and finally select the optimal candidate parameters through the approximate cross validation error (ACVE). We verify the feasibility and the efficiency of parameter tuning approach based on MoCIC on 5 benchmark datasets. Experimental results show that our approach can dramatically reduce time consumption of parameter tuning and meanwhile guarantee the effectiveness of the selected parameters.

源语言英语
主期刊名2011 3rd International Workshop on Intelligent Systems and Applications, ISA 2011 - Proceedings
DOI
出版状态已出版 - 2011
已对外发布
活动2011 3rd International Workshop on Intelligent Systems and Applications, ISA 2011 - Wuhan, 中国
期限: 28 5月 201129 5月 2011

出版系列

姓名2011 3rd International Workshop on Intelligent Systems and Applications, ISA 2011 - Proceedings

会议

会议2011 3rd International Workshop on Intelligent Systems and Applications, ISA 2011
国家/地区中国
Wuhan
时期28/05/1129/05/11

指纹

探究 'Approximate parameter tuning of support vector machines' 的科研主题。它们共同构成独一无二的指纹。

引用此