Application of Statistical K-Means Algorithm for University Academic Evaluation

Daohua Yu, Xin Zhou, Yu Pan, Zhendong Niu*, Huafei Sun

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 5
  • Captures
    • Readers: 19
  • Mentions
    • Blog Mentions: 1
see details

摘要

With the globalization of higher education, academic evaluation is increasingly valued by the scientific and educational circles. Although the number of published papers of academic evaluation methods is increasing, previous research mainly focused on the method of assigning different weights for various indicators, which can be subjective and limited. This paper investigates the evaluation of academic performance by using the statistical K-means (SKM) algorithm to produce clusters. The core idea is mapping the evaluation data from Euclidean space to Riemannian space in which the geometric structure can be used to obtain accurate clustering results. The method can adapt to different indicators and make full use of big data. By using the K-means algorithm based on statistical manifolds, the academic evaluation results of universities can be obtained. Furthermore, through simulation experiments on the top 20 universities of China with the traditional K-means, GMM and SKM algorithms, respectively, we analyze the advantages and disadvantages of different methods. We also test the three algorithms on a UCI ML dataset. The simulation results show the advantages of the SKM algorithm.

源语言英语
文章编号1004
期刊Entropy
24
7
DOI
出版状态已出版 - 7月 2022

指纹

探究 'Application of Statistical K-Means Algorithm for University Academic Evaluation' 的科研主题。它们共同构成独一无二的指纹。

引用此

Yu, D., Zhou, X., Pan, Y., Niu, Z., & Sun, H. (2022). Application of Statistical K-Means Algorithm for University Academic Evaluation. Entropy, 24(7), 文章 1004. https://doi.org/10.3390/e24071004