摘要
It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K′ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state.
源语言 | 英语 |
---|---|
文章编号 | 087503 |
期刊 | Chinese Physics B |
卷 | 24 |
期 | 8 |
DOI | |
出版状态 | 已出版 - 1 8月 2015 |