Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

Sangwook Lee, Fan Yang, Joonki Suh, Sijie Yang, Yeonbae Lee, Guo Li, Hwan Sung Choe, Aslihan Suslu, Yabin Chen, Changhyun Ko, Joonsuk Park, Kai Liu, Jingbo Li, Kedar Hippalgaonkar, Jeffrey J. Urban, Sefaattin Tongay, Junqiao Wu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

330 引用 (Scopus)

摘要

Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspendedpad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon-phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.

源语言英语
文章编号8573
期刊Nature Communications
6
DOI
出版状态已出版 - 2015
已对外发布

指纹

探究 'Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K' 的科研主题。它们共同构成独一无二的指纹。

引用此